A Metric-learning based framework for Support Vector Machines and Multiple Kernel Learning
نویسندگان
چکیده
Most metric learning algorithms, as well as Fisher’s Discriminant Analysis (FDA), optimize some cost function of different measures of within-and between-class distances. On the other hand, Support Vector Machines(SVMs) and several Multiple Kernel Learning (MKL) algorithms are based on the SVM large margin theory. Recently, SVMs have been analyzed from a metric learning perspective, and formulated as a Mahalanobis metric learning problem. This new perspective allows us to combine ideas from both SVM and metric learning, and to develop new algorithms that build on the strengths of each. Inspired by the metric learning interpretation of SVM, we develop here a new metric-learning based SVM framework in which we incorporate metric learning concepts within SVM. We extend the optimization problem of SVM to include some measure of the within-class distance and along the way we develop a new within-class distance measure which is appropriate for SVM. In addition, we adopt the same approach for MKL and show that it can be also formulated as a Mahalanobis metric learning problem. Our end result is a number of SVM/MKL algorithms that incorporate metric learning concepts. We experiment with them on a set of benchmark datasets and observe important predictive performance improvements.
منابع مشابه
یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملA Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملMODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH
Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...
متن کاملA Note on Gradient Based Learning in Vector Quantization Using Differentiable Kernels for Hilbert and Banach Spaces
Supervised and unsupervised prototype based vector quantization frequently are proceeded in the Euclidean space. In the last years, also non-standard metrics became popular. For classification by support vector machines, Hilbert or Banach space representations are very successful based on so-called kernel metrics. In this paper we give the mathematical justification that gradient based learning...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1309.3877 شماره
صفحات -
تاریخ انتشار 2013